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THE NORMAL DISTRIBUTION

Chapter

4
• the use of the normal curve in modeling 

distributions.
• finding probabilities using the normal curve.

• assessing normality of data sets with the use of 
normal probability plots.

Objectives
In this chapter we will study the normal distribution, including

4.1 Introduction
In Chapter 2, we introduced the idea of regarding a set of data as a sample from a
population. In Section 3.4 we saw that the population distribution of a quantitative
variable Y can be described by its mean and its standard deviation and also by a
density curve, which represents relative frequencies as areas under the curve. In this
chapter we study the most important type of density curve: the normal curve. The
normal curve is a symmetric “bell-shaped” curve whose exact form we will describe
next. A distribution represented by a normal curve is called a normal distribution.

The family of normal distributions plays two roles in statistical applications. Its
more straightforward use is as a convenient approximation to the distribution of an
observed variable Y. The second role of the normal distribution is more theoretical
and will be explored in Chapter 5.

An example of a natural population distribution that can be approximated by a
normal distribution follows.

Serum Cholesterol The relationship between the concentration of cholesterol in the
blood and the occurrence of heart disease has been the subject of much research.As
part of a government health survey, researchers measured serum cholesterol levels
for a large sample of Americans including children.The distribution for children be-
tween 12 and 14 years of age can be fairly well approximated by a normal curve with
mean mg/dl and standard deviation mg/dl. Figure 4.1.1 shows a his-
togram based on a sample of 727 children between 12 and 14 years old, with the nor-
mal curve superimposed.1 �

To indicate how the mean and standard deviation relate to the normal curve,
Figure 4.1.2 shows the normal curve for the serum cholesterol distribution of
Example 4.1.1, with tick marks at 1, 2, and 3 standard deviations from the mean.

sm

s = 28m = 162

Example
4.1.1
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50 100 150

Serum cholesterol (mg/dl)

200 250 300

Figure 4.1.1 Distribution of serum
cholesterol in 727 12- to 14-year-old children

78 106 134

Serum cholesterol (mg/dl)

162 190 218 246

Figure 4.1.2 Normal distribution of serum
cholesterol, with mg/dl and mg/dls = 28m = 162

0.29 0.32 0.35
Shell thickness (mm)

0.38 0.41 0.44 0.47

Figure 4.1.3 Normal
distribution of eggshell
thickness, with 
and s = 0.03 mm

m = 0.38 mm

Interspike Times in Nerve Cells In certain nerve cells, spontaneous electrical dis-
charges are observed that are so rhythmically repetitive that they are called “clock-
spikes.” The timing of these spikes, even though remarkably regular, does exhibit
variation. In one study, the interspike-time intervals (in milliseconds) for a single
housefly (Musca domestica) were observed to follow approximately a normal distri-
bution with mean and standard deviation ; this distribution
is shown in Figure 4.1.4.3 �

s = 0.4 msm = 15.6 ms

Example
4.1.3

The normal curve can be used to describe the distribution of an observed vari-
able Y in two ways: (1) as a smooth approximation to a histogram based on a sample
of Y values; and (2) as an idealized representation of the population distribution of
Y. The normal curves in Figures 4.1.1 and 4.1.2 could be interpreted either way. For
simplicity, in the remainder of this chapter we will consider the normal curve as rep-
resenting a population distribution.

Further Examples

We now give three more examples of normal curves that approximately describe
real populations. In each figure, the horizontal axis is scaled with tick marks cen-
tered at the mean and one standard deviation apart.

Eggshell Thickness In the commercial production of eggs, breakage is a major prob-
lem. Consequently, the thickness of the eggshell is an important variable. In one
study, the shell thicknesses of the eggs produced by a large flock of White Leghorn
hens were observed to follow approximately a normal distribution with mean

and standard deviation . This distribution is pictured in
Figure 4.1.3.2 �

s = 0.03 mmm = 0.38 mm 

Example
4.1.2
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Interspike-time intervals (ms)

14.4 14.8 15.2 15.6 16.0 16.4 16.8

Figure 4.1.4 Normal
distribution of interspike-
time intervals, with

and s = 0.4 msm = 15.6 ms

The preceding examples have illustrated very different kinds of populations. In
Example 4.1.3, the entire population consists of measurements on only one fly. Still
another type of population is a measurement error population, consisting of repeat-
ed measurements of exactly the same quantity. The deviation of an individual meas-
urement from the “correct” value is called measurement error. Measurement error
is not the result of a mistake but rather is due to lack of perfect precision in the
measuring process or measuring instrument. Measurement error distributions are
often approximately normal; in this case the mean of the distribution of repeated
measurements of the same quantity is the true value of the quantity (assuming that
the measuring instrument is correctly calibrated), and the standard deviation of the
distribution indicates the precision of the instrument. One measurement error dis-
tribution was described in Example 2.2.12. The following is another example.

Measurement Error When a certain electronic instrument is used for counting parti-
cles such as white blood cells, the measurement error distribution is approximately
normal. For white blood cells, the standard deviation of repeated counts based on
the same blood specimen is about 1.4% of the true count.Thus, if the true count of a
certain blood specimen were 7,000 cells/mm3, then the standard deviation would be
about 100 cells/mm3 and the distribution of repeated counts on that specimen would
resemble Figure 4.1.5.4 �

Example
4.1.4

6700 6800 6900 7000

White blood cell count (cells/mm3)

7100 7200 7300

Figure 4.1.5 Normal
distribution of repeated
white blood cell counts of a
blood specimen whose true
value is .
The standard deviation is

.s = 100 cells/mm3

m = 7000 cells/mm3

4.2 The Normal Curves
As the examples in Section 4.1 show, there are many normal curves; each particular
normal curve is characterized by its mean and standard deviation. If a variable Y
follows a normal distribution with mean and standard deviation , then it is com-
mon to write  , All the normal curves can be described by a single for-
mula. Even though we will not make any direct use of the formula in this book, we
present it here, both as a matter of interest and also to emphasize that a normal
curve is not just any symmetric curve, but rather a specific kind of symmetric curve.

s).Y ' N(m
sm



124 Chapter 4 The Normal Distribution

If a variable Y follows a normal distribution with mean and standard devia-
tion , then the density curve of the distribution of Y is given by the following
formula:

This function, , is called the density function of the distribution and expresses
the height of the curve as a function of the position y along the y-axis.The quantities

and that appear in the formula are constants, with approximately equal to 2.71
and approximately equal to 3.14.

Figure 4.2.1 shows a graph of a normal curve. The shape of the curve is like a
symmetric bell, centered at . The direction of curvature is downward (like an
inverted bowl) in the central portion of the curve, and upward in the tail portions.
The points of inflection (i.e., where the curvature changes direction) are 
and ; notice that the curve is almost linear near these points. In principle
the curve extends to and , never actually reaching the y-axis; however, the
height of the curve is very small for y values more than three standard deviations
from the mean. The area under the curve is exactly equal to 1. (Note: It may seem
paradoxical that a curve can enclose a finite area, even though it never descends to
touch the y-axis. This apparent paradox is clarified in Appendix 4.1.)
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Figure 4.2.1 A normal
curve with mean and
standard deviation s

m

20 40 60 80 100 120 140 160

m = 40
s = 10

m = 100
s = 20

m = 120
s = 5

Figure 4.2.2 Three
normal curves with
different means and
standard deviations

All normal curves have the same essential shape, in the sense that they can be
made to look identical by suitable choice of the vertical and horizontal scales for
each. (For instance, notice that the curves in Figures 4.1.2–4.1.5 look identical.) But
normal curves with different values of and will not look identical if they are all
plotted to the same scale, as illustrated by Figure 4.2.2. The location of the normal
curve along the y-axis is governed by since the curve is centered at ; the
width of the curve is governed by . The height of the curve is also determined by .
Since the area under each curve must be equal to 1, a curve with a smaller value of

must be taller. This reflects the fact that the values of Y are more highly concen-
trated near the mean when the standard deviation is smaller.
s

ss

y = mm
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4.3 Areas under a Normal Curve
As explained in Section 3.4, a density curve can be quantitatively interpreted in
terms of areas under the curve. While areas can be roughly estimated by eye, for
some purposes it is desirable to have fairly precise information about areas.

The Standardized Scale

The areas under a normal curve have been computed mathematically and are tabu-
lated here for practical use. The use of this tabulated information is much simplified
by the fact that all normal curves can be made equivalent with respect to areas
under them by suitable rescaling of the horizontal axis. The rescaled variable is de-
noted by Z; the relationship between the two scales is shown in Figure 4.3.1.

Y

Z

3210−1−2−3

m − 3s m − 2s m + 2s m + 3sm − s m + sm

Figure 4.3.1 A normal
curve, showing the
relationship between the
natural scale (Y) and the
standardized scale (Z)

As Figure 4.3.1 indicates, the Z scale measures standard deviations from the
mean: corresponds to 1.0 standard deviation above the mean; cor-
responds to 2.5 standard deviations below the mean, and so on. The Z scale is re-
ferred to as a standardized scale.

The correspondence between the Z scale and the Y scale can be expressed by
the formula given in the following box.

Standardization Formula

The variable Z is referred to as the standard normal and its distribution follows
a normal curve with mean zero and standard deviation one.Table 3 at the end of this
book gives areas under the standard normal curve, with distances along the horizon-
tal axis measured in the Z scale. Each area tabled in Table 3 is the area under the
standard normal curve below a specified value of z. For example, for , the
tabled area is 0.9370; this area is shaded in Figure 4.3.2.

z = 1.53

Z =
Y - m
s

z = -2.5z = 1.0

1.53

Area = 0.9370

Z

0.00
Figure 4.3.2 Illustration
of the use of Table 3
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0.00 1.53

Z

Area = 0.0630

Figure 4.3.3 Area under a standard normal
curve above 1.53

If we want to find the area above a given value of z, we subtract the tabulated
area from 1. For example, the area above is 
(Figure 4.3.3).

To find the area between two z values (also commonly called z scores) we can sub-
tract the areas given in Table 3. For example, to find the area under the Z curve be-
tween and (Figure 4.3.4), we take the area below 0.8, which is 0.7881,
and subtract the area below which is 0.1151, to get 0.7881 - 0.1151 = 0.6730.-1.2,

z = 0.8z = -1.2

1.0000 - 0.9370 = 0.0630z = 1.53

Area = 0.6730

0.8

Z

−1.2

Figure 4.3.4 Area under a standard normal
curve between and 0.8-1.2

Z

99.7%

0−1−2−3
1

2 3

95%

68%

Figure 4.3.5 Areas under a standard normal curve
between and , between and , and between

and +3-3
+2-2+1-1

Z

99.7%

162

Serum cholesterol (mg/dl)

13410678 190 218 246

95%

68%

Figure 4.3.6 The 68/95/99.7 rule and the serum
cholesterol distribution

Using Table 3, we see that the area under the normal curve between and
is . Thus, for any normal distribution, about 68% of

the observations are within standard deviation of the mean.Likewise, the area under
the normal curve between and is and the
area under the normal curve between and is 

. This means that for any normal distribution about 95% of the observations
are within standard deviations of the mean and about 99.7% of the observations
are within standard deviations of the mean. (See Figure 4.3.5.) For example,
about 68% of the serum cholesterol values in the idealized distribution of Figure
4.1.2 are between 134 mg/dl and 190 mg/dl, about 95% are between 106 mg/dl and
218 mg/dl, and virtually all are between 78 mg/dl and 246 mg/dl. Figure 4.3.6 shows
these percentages.

;3
;2

0.9974
0.9987 - 0.0013 =z = +3z = -3

0.9772 - 0.0228 = 0.9544z = +2z = -2
;1

0.8413 - 0.1578 = 0.6826z = +1
z = -1

If the variable Y follows a normal distribution, then

about 68% of the y’s are within SD of the mean.

about 95% of the y’s are within SDs of the mean.

about 99.7% of the y’s are within SDs of the mean.;3

;2

;1
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These statements provide a very definite interpretation of the standard deviation in
cases where a distribution is approximately normal. (In fact, the statements are
often approximately true for moderately nonnormal distributions; that is why, in
Section 2.6, these percentages—68%, 95%, and %—were described as “typical”
for “nicely shaped” distributions.)

Determining Areas for a Normal Curve

By taking advantage of the standardized scale, we can use Table 3 to answer detailed
questions about any normal population when the population mean and standard de-
viation are specified. The following example illustrates the use of Table 3. (Of
course, the population described in the example is an idealized one, since no actual
population follows a normal distribution exactly.)

Lengths of Fish In a certain population of the herring Pomolobus aestivalis, the
lengths of the individual fish follow a normal distribution. The mean length of the
fish is 54.0 mm, and the standard deviation is 4.5 mm.5 We will use Table 3 to answer
various questions about the population.

(a) What percentage of the fish are less than 60 mm long?
Figure 4.3.7 shows the population density curve, with the desired area in-

dicated by shading. In order to use Table 3, we convert the limits of the area
from the Y scale to the Z scale, as follows:

For , the z score is

Thus, the question “What percentage of the fish are less than 60 mm long?” is
equivalent to the question “What is the area under the standard normal curve
below the z value of 1.33?” Looking up in Table 3, we find that the
area is 0.9082; thus, 90.82% of the fish are less than 60 mm long.

z = 1.33

z =
y - m
s

=
60 - 54

4.5
= 1.33

y = 60

Example
4.3.1

799

Area = 0.9082

54 60
0 1.33

Y
Z

Figure 4.3.7 Area under
the normal curve in
Example 4.3.1(a)

(b) What percentage of the fish are more than 51 mm long?
The standardized value for is

Thus, the question “What percentage of the fish are more than 51 mm long?”
is equivalent to the question “What is the area under the standard normal
curve above the z value of ?” Figure 4.3.8 shows this relationship. Look--0.67

z =
y - m
s

=
51 - 54

4.5
= -0.67

y = 51
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Y
51 54

Area = 0.7486Area = 0.2514

−0.67 0 Z

Figure 4.3.8 Area under
the normal curve in
Example 4.3.1(b)

60

Area = 0.6568

5451
1.33

Y
Z0−0.67

Figure 4.3.9 Area under
the normal curve in
Example 4.3.1(c)

Area = 0.0949

51
0

Y
Z

58
0.89

60
1.33

Figure 4.3.10 Area under
the normal curve in
Example 4.3.1(d)

ing up in Table 3, we find that the area below is 0.2514.
This means that the area above is . Thus,
74.86% of the fish are more than 51 mm long.

(c) What percentage of the fish are between 51 and 60 mm long?
Figure 4.3.9 shows the desired area. This area can be expressed as a differ-

ence of two areas found from Table 3. The area below is 0.9082, as
found in part (a), and the area below is 0.2514, as found in part (b).
Consequently, the desired area is computed as

Thus, 65.68% of the fish are between 51 and 60 mm long.

0.9082 - 0.2514 = 0.6568

y = 51
y = 60

1 - 0.2514 = 0.7486z = -0.67
z = -0.67z = -0.67

(d) What percentage of the fish are between 58 and 60 mm long?
Figure 4.3.10 shows the desired area. This area can be expressed as a dif-

ference of two areas found from Table 3. The area below is 0.9082, as
was found in part (a). To find the area below , we first calculate the z
value that corresponds to :

The area under the Z curve below is 0.8133. Consequently, the de-
sired area is computed as

Thus, 9.49% of the fish are between 58 and 60 mm long. �

0.9082 - 0.8133 = 0.0949

z = 0.89

z =
y - m
s

=
58 - 54

4.5
= 0.89

y = 58
y = 58

y = 60
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Each of the percentages found in Example 4.3.1 can also be interpreted in terms
of probability. Let the random variable Y represent the length of a fish randomly
chosen from the population. Then the results in Example 4.3.1 imply that

and

Thus, the normal distribution can be interpreted as a continuous probability
distribution.

Note that because the idealized normal distribution is perfectly continuous,
probabilities such as

are equal (see Section 3.4). That is,

If, however, the length were measured only to the nearest mm, then the measured
variable would actually be discrete, so that and would dif-
fer somewhat from each other. In cases where this discrepancy is important, the
computation can be refined to take into account the discontinuity of the measured
distribution (we will later see such an example in Section 5.4).

Inverse Reading of Table 3

In determining facts about a normal distribution, it is sometimes necessary to read
Table 3 in an “inverse” way—that is, to find the value of z corresponding to a given
area rather than the other way around. For example, suppose we want to find the
value on the Z scale that cuts off the top 2.5% of the distribution. This number is
1.96, as shown in Figure 4.3.11.

We will find it helpful, for future reference, to introduce some notation. We will
use the notation to denote the number such that and

, as shown in Figure 4.3.12. Thus, .z0.025 = 1.96Pr5Z 7 za6 = a
Pr5Z 6 za6 = 1 - aza

Pr5Y Ú 486Pr5Y 7 486
= Pr5Y 7 486
= Pr5Y 7 486 + 0 (since Y is taken to be continuous)

 Pr5Y Ú 486 = Pr5Y 7 486 + Pr5Y = 486

Pr5Y 7 486 and Pr5Y Ú 486

 Pr558 6 Y 6 606 = 0.0949

 Pr551 6 Y 6 606 = 0.6568

 Pr5Y 7 516 = 0.7486

 Pr5Y 6 606 = 0.9082

Z

Area = 0.0250

0 1.96

Area = 0.9750

Figure 4.3.11 Area under the normal curve
above 1.96

0

Area = a

Area = 1 − a

Zza

Figure 4.3.12 Area under the normal curve
above a

We often need to determine a value when we want to determine a percentile
of a normal distribution.The percentiles of a distribution divide the distribution into
100 equal parts, just as the quartiles divide it into 4 equal parts [from the Latin roots
centum (“hundred”) and quartus (“fourth”)]. For example, suppose we want to find

za
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Area = 0.30

Z0 z0.30

Area = 0.70

Figure 4.3.13
Determining the 70th
percentile of a normal
distribution

Z
Yy*54

0 0.52

Area = 0.30Area = 0.70

Figure 4.3.14 Determining
the 70th percentile of a
normal distribution,
Example 4.3.2(a)

the 70th percentile of a standard normal distribution. That means that we want to
find the number that divides the standard normal distribution into two parts:
the bottom 70% and the top 30%. As Figure 4.3.13 illustrates, we need to look in
Table 3 for an area of 0.7000.The closest value is an area of 0.6985, corresponding to
a z value of 0.52. Thus, .z0.30 = 0.52

z0.30

Area = 0.20

Area = 0.80

y* 54 Y
Z−0.84 0

Figure 4.3.15 Determining
the 20th percentile of a
normal distribution,
Example 4.3.2(b)

Lengths of Fish

(a) Suppose we want to find the 70th percentile of the fish length distribution of
Example 4.3.1. Let us denote the 70th percentile by . By definition, is the
value such that 70% of the fish lengths are less than and 30% are greater, as
illustrated in Figure 4.3.14.

To find we use the value of that we just determined. Next
we convert this z value to the Y scale.We know that if we were given the value
of , we could convert it to a standard normal (z scale) and the result would
be 0.52. Thus, from the standardization formula we obtain the equation

which can be solved to give . The 70th percentile
of the fish length distribution is 56.3 mm.

y* = 54 + 0.52 * 4.5 = 56.3

0.52 =
y* - 54

45

y*

z0.30 = 0.52y*,

y*
y*y*

Example
4.3.2

(b) Suppose we want to find the 20th percentile of the fish length distribution of
Example 4.3.1. Let us denote the 20th percentile by . By definition, is the
value such that 20% of the fish lengths are less than and 80% are greater, as
illustrated in Figure 4.3.15.

y*
y*y*
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To find we first determine the value of , which is the 20th percentile
in the Z scale. As Figure 4.3.15 illustrates, we need to look in Table 3 for an
area of .2000. The closest value is an area of .2005, corresponding to .
The next step is to convert this z value to the Y scale. From the standardization
formula, we obtain the equation

which can be solved to give . The 20th percentile
of the fish length distribution is 50.2 mm. �

Problem-Solving Tip In solving problems that require the use of Table 3, a sketch
of the distribution (as in Figures 4.3.7–4.3.10 and 4.3.14–4.3.15) is a very handy aid
to straight thinking.

While Table 3 is handy for carrying out the sorts of computations discussed pre-
viously, computer software may also be used to find normal probabilities directly
without the need for any standardization.

Exercises 4.3.1–4.3.16

y* = 54 - 0.84 * 4.5 = 50.2

-0.84 =
y* - 54

45

z = -0.84

z0.80y*

4.3.1 Suppose a certain population of observations is
normally distributed. What percentage of the observa-
tions in the population
(a) are within standard deviations of the mean?

(b) are more than 2.5 standard deviations above the
mean?

(c) are more than 3.5 standard deviations away from
(above or below) the mean?

4.3.2
(a) The 90th percentile of a normal distribution is how

many standard deviations above the mean?

(b) The 10th percentile of a normal distribution is how
many standard deviations below the mean?

4.3.3 The brain weights of a certain population of adult
Swedish males follow approximately a normal distribu-
tion with mean 1,400 gm and standard deviation 100 gm.6

What percentage of the brain weights are

(a) 1,500 gm or less?

(b) between 1,325 and 1,500 gm?

(c) 1,325 gm or more?

(d) 1,475 gm or more?

(e) between 1,475 and 1,600 gm?

(f) between 1,200 and 1,325 gm?

4.3.4 Let Y represent a brain weight randomly chosen
from the population of Exercise 4.3.3. Find
(a)

(b) Pr51,475 … Y … 1,6006
Pr5Y … 1,3256

;1.5

4.3.5 In an agricultural experiment, a large uniform field
was planted with a single variety of wheat. The field was
divided into many plots (each plot being ft) and
the yield (lb) of grain was measured for each plot. These
plot yields followed approximately a normal distribution
with mean 88 lb and standard deviation 7 lb.7 What per-
centage of the plot yields were
(a) 80 lb or more? (b) 90 lb or more?

(c) 75 lb or less? (d) between 75 and 90 lb?

(e) between 90 and 100 lb? (f) between 75 and 80 lb?

4.3.6 Refer to Exercise 4.3.5. Let Y represent the yield of
a plot chosen at random from the field. Find
(a) (b)

4.3.7 Consider a standard normal distribution, Z. Find
(a) (b) (c) (d)

4.3.8 For the wheat-yield distribution of Exercise 4.3.5,
find
(a) the 65th percentile (b) the 35th percentile

4.3.9 The serum cholesterol levels of 12- to 14-year-olds
follow a normal distribution with mean 162 mg/dl and
standard deviation 28 mg/dl. What percentage of 12 to
14-year-olds have serum cholesterol values
(a) 171 or more? (b) 143 or less?

(c) 194 or less? (d) 105 or more?

(e) between 166 and 194? (f) between 105 and 138?

(g) between 138 and 166?

z0.01z0.05z0.25z0.10

Pr575 6 Y 6 906Pr5Y 7 906

7 * 100
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4.3.10 Refer to Exercise 4.3.9. Suppose a 13-year-old is
chosen at random and let Y be the person’s serum choles-
terol value. Find
(a) (b)

4.3.11 For the serum cholesterol distribution of Exercise
4.3.9, find
(a) the 80th percentile (b) the 20th percentile

4.3.12 When red blood cells are counted using a certain
electronic counter, the standard deviation of repeated
counts of the same blood specimen is about 0.8% of the
true value, and the distribution of repeated counts is ap-
proximately normal.8 For example, this means that if the
true value is 5,000,000 cells mm3, then the SD is 40,000.

(a) If the true value of the red blood count for a certain
specimen is 5,000,000 cells mm3, what is the proba-
bility that the counter would give a reading between
4,900,000 and 5,100,000?

(b) If the true value of the red blood count for a certain
specimen is , what is the probability that the count-
er would give a reading between and ?

(c) A hospital lab performs counts of many specimens
every day. For what percentage of these specimens
does the reported blood count differ from the cor-
rect value by 2% or more?

4.3.13 The amount of growth, in a 15-day period, for a
population of sunflower plants was found to follow a nor-
mal distribution with mean 3.18 cm and standard devia-
tion 0.53 cm.9 What percentage of plants grow

(a) 4 cm or more? (b) 3 cm or less?

(c) between 2.5 and 3.5 cm?

1.02m0.98m
m

>
>

Pr5166 6 Y 6 1946Pr5Y Ú 1666

4.4 Assessing Normality
Many statistical procedures are based on having data from a normal population. In
this section we consider ways to assess whether it is reasonable to use a normal
curve model for a set of data and, if not, how we might proceed.

Recall from Section 4.3 that if the variable Y follows a normal distribution, then

about 68% of the y’s are within SD of the mean.

about 95% of the y’s are within SDs of the mean.

about 99.7% of the y’s are within SDs of the mean.

We can use these facts as a check of how closely a normal curve model fits a set of
data.

;3

;2

;1

4.3.14 Refer to Exercise 4.3.13. In what range do the
middle 90% of all growth values lie?

4.3.15 For the sunflower plant growth distribution of Ex-
ercise 4.3.13, what is the 25th percentile?

4.3.16 Many cities sponsor marathons each year. The fol-
lowing histogram shows the distribution of times that it
took for 10,002 runners to complete the Rome marathon
in 2008, with a normal curve superimposed. The fastest
runner completed the 26.3-mile course in 2 hours and 9
minutes, or 129 minutes. The average time was 245 min-
utes and the standard deviation was 40 minutes. Use the
normal curve to answer the following questions.10

(a) What percentage of times were greater than 200
minutes?

(b) What is the 60th percentile of the times?

(c) Notice that the normal curve approximation is fairly
good except around the 240-minute mark. How can we
explain this anomalous behavior of the distribution?

140 180 220 260
Final time (minutes)

300 340
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Serum Cholesterol For the serum cholesterol data of Example 4.1.1, the sample mean
is 162 and the sample SD is 28. The interval “mean SD” is

( , ) or (134, 190)

This interval contains 509 of the 727 observations, or 70.0% of the data. Likewise,
the interval

( ) is (106, 218)

which contains 685, or 94.2%, of the 727 observations. Finally, the interval

( ) is (78, 246)

which contains 724, or 99.6%, of the 727 observations. The three observed
percentages

agree quite well with the theoretical percentages of

This agreement supports the claim that serum cholesterol levels for 12- to 14-year-
olds have a normal distribution.This reinforces the visual evidence of Figure 4.1.1. �

Moisture Content Moisture content was measured in each of 83 freshwater fruit.11

Figure 4.4.1 shows that this distribution is strongly skewed to the left. The sample
mean of these data is 80.7 and the sample SD is 12.7. The interval

( )

contains 70, or 84.3%, of the 83 observations. The interval

( )

contains 78, or 94.0%, of the 83 observations. Finally, the interval

( )

contains 80, or 96.4%, of the 83 observations. The three percentages

84.3%, 94.0%, and 96.4%

differ from the theoretical percentages of

68%, 95%, and 99.7%

because the distribution is far from being bell-shaped. This reinforces the visual evi-
dence of Figure 4.4.1. �

80.7 - 3 * 12.7, 80.7 + 3 * 12.7

80.7 - 2 * 12.7, 80.7 + 2 * 12.7

80.7 - 12.7, 80.7 + 12.7

Example
4.4.2

68%, 95%, and 99.7%

70.0%, 94.2%, and 99.6%

162 - 3 * 28, 162 + 3 * 28

162 - 2 * 28, 162 + 2 * 28

162 + 28162 - 28

;
Example

4.4.1
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Figure 4.4.1 Moisture
content in freshwater fruit
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Normal Probability Plots

A normal probability plot is a special statistical graph that is used to assess normal-
ity. We present this statistical tool with an example using the heights (in inches) of a
sample of 11 women, sorted from smallest to largest:

Based on these data, does it make sense to use a normal curve to model the distribu-
tion of women’s heights? Figure 4.4.2 is a histogram of the data with a normal curve
superimposed, using the sample mean of 65.5 and the sample standard deviation of
2.9 as the parameters of the normal curve. This histogram is fairly symmetric, but
when we have a small sample, it can be hard to tell the shape of the population dis-
tribution by looking at a histogram.

61, 62.5, 63, 64, 64.5, 65, 66.5, 67, 68, 68.5, 70.5

58 60 62 64 66
Height (inches)

68 70 72 74Figure 4.4.2 Histogram of
the heights of 11 women

Because it is often difficult to visually examine a histogram and decide if it is bell-
shaped or not, a visually simpler plot, the normal probability plot, was developed.*
A normal probability plot is a scatterplot that compares our observed data values to
values we would expect to see if the population were normal. If the data come from
a normal population, the points in this plot should follow a straight line, which is
much easier to visually recognize than a bell shape of a jagged histogram. As many
statistical procedures are based on the condition that the data came from a normal
population, it is important to be able to assess normality.

How Normal Probability Plots Work

In Examples 4.4.1 and 4.4.2 we compared the observed proportion of data that falls
within 1, 2, and 3 SDs of the mean and then compared those values to the propor-
tions we would expect to find if the data were from a normal population. It is natu-
ral to consider these intervals, but we could consider other intervals as well. For
example, we would expect about 86.6% of normal data to fall within 1.5 SDs of the
mean and 96.4% to within 2.1.† We could even consider one-sided intervals. For ex-
ample, we would expect 84.1% of normal data values to be less than the mean plus
1 SD.

Rather than focus on comparing percentages, we could instead focus on com-
paring actual observed women’s heights to heights we would expect to see if the
data were from a normal population. For example, the shortest woman in our
sample is 61 inches tall; that is, 1/11th (or 0.0909) of the sample is 61 inches or
shorter. If heights of women really follow a normal distribution, with mean 65.5
and standard deviation 2.9, then we would expect the 9.09th percentile to be

or 61.6 inches.This value is close to the observedm + z(1- .0909)s = 65.5 - 1.34 * 2.9

*Though visually simple, the construction of these plots is complex and typically performed using statistical
software.
†These values can be verified using the techniques of Section 4.3.
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value of 61 inches. We could repeat this sort of calculation for each of the 11 ob-
served data values. A normal probability plot provides a visual comparison of these
values.

The first step in creating a normal probability plot, therefore, is to compute the
sample percentiles. Example 4.4.3 presents this computation, which is typically per-
formed by statistical software.

Height of Eleven Women Sorting the data from smallest to largest we observe that
1/11th ( ) of our sample is 61 inches or shorter, 2/11ths ( ) is 62.5
inches or shorter, ... 10/11ths (90.9%) is 68.5 inches or shorter and 11/11ths (100%)
is 70.5 inches or shorter. Unfortunately, computing percentages in this simplistic way
(i.e., where i is the sorted observation number) creates some implausible
population estimates. For example, it seems unreasonable to believe that 100% of
the population is 70.5 inches or shorter when, after all, we are observing only a small
sample; a larger sample would likely observe some taller women. To correct for this,
an alternative and more reasonable percentage for each data value is computed as

where i is the index of the data value in the sorted list.* These adjust-
ed percentiles are tabulated in Table 4.4.1. Note that these values actually do not de-
pend on the data observed; they depend only on the number of data values in the
sample. �

100 A i - 1
2 B >n

100 * i>n

=  18.2%=  9.1%
Example

4.4.3

Table 4.4.1 Computing indices and percentiles for the heights of eleven women

i 1 2 3 4 5 6 7 8 9 10 11

Observed height 61.0 62.5 63.0 64.0 64.5 65.0 66.5 67.0 68.0 68.5 70.5

Percentile 100(i/11) 9.09 18.18 27.27 36.36 45.45 54.55 63.64 72.73 81.82 90.91 100.00

Adjusted percentile
100 A i - 1

2 B >11
4.55 13.64 22.73 31.82 40.91 50.00 59.09 68.18 77.27 86.36 95.45

Once we have the adjusted percentiles we find the corresponding z scores using
Table 3 or a computer. Then, with these z scores we find the theoretical heights:

as in Example 4.4.4.

Heights of Eleven Women The shortest woman’s adjusted percentile is 4.55%. The
corresponding z score is . In this example, the sample
mean and standard deviation are 65.5 and 2.9, respectively, so the expected height of
the shortest woman in a sample of 11 women from a normal population is

inches. The z scores and theoretical heights for this
woman and the remaining 10 women appear in Table 4.4.2.
65.5 - 1.69 * 2.9 = 60.6

z(1-0.0455) = z0.9545 = -1.69
Example

4.4.4

m + z * s

Table 4.4.2 Computing theoretical z scores and heights for eleven women

i 1 2 3 4 5 6 7 8 9 10 11

Observed height 61.0 62.5 63.0 64.0 64.5 65.0 66.5 67.0 68.0 68.5 70.5

Adjusted percentile
100 A i - 1

2 B >11
4.55 13.64 22.73 31.82 40.91 50.00 59.09 68.18 77.27 86.36 95.45

z -1.69 -1.10 0.75- -0.47 -0.23 0.00 0.23 0.47 0.75 1.10 1.69

Theoretical height 60.6 62.3 63.4 64.1 64.8 65.5 66.2 66.9 67.6 68.7 70.4

*Different software packages may compute these proportions differently and may also modify the formula
based on sample size. The preceding formula is used by the software package R when .n 7 10



Next, by plotting the observed heights against the theoretical heights in a scat-
terplot as in Figure 4.4.3, we may visually compare the values. In this case our plot
appears fairly linear, suggesting that the observed values generally agree with the
theoretical values—that the normal model provides a reasonable approximation to
the data. If the data do not agree with the normal model, then the plot will show
strong nonlinear patterns such as curvature or S shapes.
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*Some software programs create normal probability plots with the normal scores on the vertical axis and the ob-
served data on the horizontal axis.
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62.6 65.5 68.4 71.2 YFigure 4.4.3 Normal

probability plot of the
heights of 11 women

Because of the one-to-one correspondence between the z scores and theoretical
values, it is not common to put both sets of labels on the x-axis as in Figure 4.4.3.Tra-
ditionally only the z scores are displayed.* �

Making Decisions about Normality

Of course, even when we sample from a perfectly normal distribution, we have to
expect that there will be some variability between the sample we obtain and the theo-
retical normal scores. Figure 4.4.4 shows six normal probability plots based on samples
taken from a N(0, 1) distribution. Notice that all six plots show a general linear pat-
tern. It is true that there is a fair amount of “wiggle” in some of the plots, but the im-
portant feature of each of these plots is that we can draw a line that captures the trend
in the bulk of the points, with little deviation away from this line, even at the extremes.

If the points in the normal probability plot do not fall more or less along a
straight line, then there is an indication that the data are not from a normal popula-
tion. For example, if the top of the plot bends up, that means the y values at the
upper end of the distribution are too large for the distribution to be bell-shaped;
that is, the distribution is skewed to the right or has large outliers, as in Figure 4.4.5.

If the bottom of the plot bends down, that means the y values at the lower end
of the distribution are too small for the distribution to be bell-shaped; that is, the dis-
tribution is skewed to the left or has small outliers. Figure 4.4.6 shows the distribu-
tion of moisture content in the freshwater fruit from Example 4.4.2, which is
strongly skewed to the left.
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If a distribution has a very long left-hand tail and a long right-hand tail, when
compared to a normal curve, then the normal probability plot will have something
of an S shape. Figure 4.4.7 shows such a distribution.

Sometimes the same value shows up repeatedly in a sample, due to rounding in
the measurement process.This leads to granularity in the normal probability plot, as
in Figure 4.4.8, but this does not stop us from inferring that the underlying distribu-
tion is normal.
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Transformations for Nonnormal Data

A normal probability plot can help us assess whether or not the data came from a
normal distribution. Sometimes a histogram or normal probability plot shows that
our data are nonnormal, but a transformation of the data gives us a symmetric, bell-
shaped curve. In such a situation, we may wish to transform the data and continue
our analysis in the new (transformed) scale.

Lentil Growth The histogram and normal probability plot in Figure 4.4.9 show the
distribution of the growth rate, in cm per day, for a sample of 47 lentil plants.12 This
distribution is skewed to the right. If we take the logarithm of each observation, we

Example
4.4.5
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Figure 4.4.9 Histogram
and normal probability plot
of growth rates of 47 lentil
plants
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get a distribution that is much more nearly symmetric. The plots in Figure 4.4.10
show that in log scale the growth rate distribution is approximately normal. (In
Figure 4.4.10 the base 10 logarithm, , is used, but we could use any base, such
as the natural log, , and the effect on the shape of the distribution would be
the same.) �

In general, if the distribution is skewed to the right then one of the following
transformations should be considered: . These transforma-
tions will pull in the long right-hand tail and push out the short left-hand tail, mak-
ing the distribution more nearly symmetric. Each of these is more drastic than the
one before.Thus, a square root transformation will change a mildly skewed distribu-
tion into a symmetric distribution, but a log transformation may be needed if the
distribution is more heavily skewed, and so on. For example, we saw in Example
2.7.6 how a square root transformation pulls in a long right-hand tail and how a log
transformation pulls in the right-hand tail even more. If the distribution of a vari-
able Y is skewed to the left, then raising Y to a power greater than 1 can be helpful.

An Objective Measure of Abnormality: 
The Shapiro–Wilk Test (optional)

While normal probability plots are better than histograms to visually assess depar-
tures of normality, our visual perception is still subjective. The data appearing in the
probability plots of Figure 4.4.4 come from a normal population, but to untrained
eyes (and even to some trained ones) a few of the plots might be interpreted as
being nonnormal. The Shapiro–Wilk test is a statistical procedure that numerically
assesses evidence for certain types of nonnormality in data. As with the normal
probability plot, the mechanics of the procedure is complex, but fortunately many
statistical software packages will perform this or similar tests of normality.*

The output of a Shapiro–Wilk test is a P-value† and is interpreted as follows:

P-value Very strong evidence for nonnormality
P-value Strong evidence for nonnormality
P-value Moderate evidence for nonnormality
P-value Mild or weak evidence for nonnormality
P-value 0.10 No compelling evidence for nonnormalityÚ

6 0.10
6 0.05
6 0.01
6 0.001

1Y , logY, 1>1Y , 1>Y

loge = ln
log10

*The Ryan–Joiner, Anderson–Darling, and Kolmogorov–Smirnoff tests are other tests of nonnormality com-
monly found in statistical software packages.
†As we shall see in much greater detail in Chapter 7, a P-value is not unique to testing for normality. In a test of
all sorts of hypotheses, the weight of evidence for the hypothesis in question (in this case—the Shapiro–Wilk
test—the hypothesis is that the data are nonnormal) can be reported using this term. Small P-values are inter-
preted as evidence for the hypothesis in question.
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Example 4.4.6 illustrates the Shapiro–Wilk test for the lentil growth data of
Example 4.4.5.

Lentil Growth For the untransformed lentil data in Figure 4.4.9, the P-value (report-
ed from the statistical software package R) for the Shapiro–Wilk test is 0.000006.
Thus, there is very strong evidence that lentil growth does not follow a normal distri-
bution. For the transformed data in Figure 4.4.10, however, the P-value for the
Shapiro–Wilk test is 0.2090, indicating that there is no compelling evidence for non-
normality of the log-transformed growth data. �

Caution. The use of this test procedure and P-value is somewhat like the use of the
“check engine light” on a car. When the P-value is small, there is an indication of
nonnormality. This is like your engine light coming on: You pull over and assess the
situation. Likewise, as we shall see in future chapters, when we have nonnormal
data, we will carefully have to assess how to proceed with our analyses. On the other
hand, when the P-value is not small ( 0.10) we don’t have evidence of nonnormali-
ty. This is similar to your engine light staying off: You continue to drive forward
without worry, but this does not guarantee that your car is perfectly OK. Your car
could break down at any time. Of course, if we were constantly worried about our
car even when the check engine light were off, we would perpetually find ourselves
paralyzed and pulled over at the side of the road. Analogously, when the P-value
from the Shapiro–Wilk tests is not small (the light is off), this only means that there
is no compelling evidence for nonnormality. It does not guarantee that the popula-
tion is, in fact, normal.

Exercises 4.4.1–4.4.8

Ú

Example
4.4.6

4.4.1 In Example 4.1.2 it was stated that shell thicknesses
in a population of eggs follow a normal distribution with
mean and standard deviation .
Use the 68%–95%–99.7% rule to determine intervals,
centered at the mean, that include 68%, 95%, and 99.7%
of the shell thicknesses in the distribution.

s = 0.03 mmm = 0.38 mm

4.4.2 The following three normal probability plots, (a),
(b), and (c), were generated from the distributions shown
by histograms I, II, and III.Which normal probability plot
goes with which histogram? How do you know?

Y

Normal scores
(a)

Y

Normal scores
(b)

Y

Normal scores
(c)

Y

I II III
Y Y
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4.4.3 For each of the following normal probability plots,
sketch the corresponding histogram of the data.

4.4.4 The mean daily rainfall between January 1, 2007,
through January 1, 2009, at Pismo Beach, California, was
0.02 inches with a standard deviation of 0.11 inches.
Based on this information, do you think it is reasonable
to believe that daily rainfall at Pismo Beach follows a
normal distribution? Explain. (Hint:Think about the pos-
sible values for daily rainfall.)13

4.4.5 The mean February 1 daily high temperature in
Juneau, Alaska, between 1945 and 2005 was 1.1 C with a
standard deviation of 1.9 

(a) Based on this information, do you think it is reason-
able to believe that the February 1 daily high tem-
peratures in Juneau, Alaska, follow a normal
distribution? Explain.

(b) Does this information provide compelling evidence
that the February 1 daily high temperatures in
Juneau, Alaska, follow a normal distribution? 
Explain.

4.4.6 The following normal probability plot was created
from the times that it took 166 bicycle riders to complete
the stage 11 time trial, from Grenoble to Chamrousse,
France, in the 2001 Tour de France cycling race.

°C.14
°

Y

Normal scores
(b)

Y

Normal scores
(a)

(a) Consider the fastest riders. Are their times better
than, worse than, or roughly equal to the times one
would expect the fastest riders to have if the data
came from a truly normal distribution?

(b) Consider the slowest riders. Are their times better
than, worse than, or roughly equal to the times one
would expect the slowest riders to have if the data
came from a truly normal distribution?

4.4.7 The P-values for the Shapiro–Wilk test for the data
appearing in probability plots (a) and (b) are 0.235 and
0.00015. Which P-value corresponds to which plot? What
is the basis for your decision?
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4.4.8
(a) The P-value for the Shapiro–Wilk test of normality

for the data in Exercise 4.4.3(b) is 0.039. Using this
value to justify your answer, does it seem reasonable
to believe that these data came from a normal
population?

4.5 Perspective
The normal distribution is also called the Gaussian distribution, after the German
mathematician K. F. Gauss. The term normal, with its connotations of “typical” or
“usual,” can be seriously misleading. Consider, for instance, a medical context,
where the primary meaning of “normal” is “not abnormal.” Thus, confusingly, the
phrase “the normal population of serum cholesterol levels” may refer to cholesterol
levels in ideally “healthy” people, or it may refer to a Gaussian distribution such as
the one in Example 4.1.1. In fact, for many variables the distribution in the normal
(nondiseased) population is decidedly not normal (i.e., not Gaussian).

The examples of this chapter have illustrated one use of the normal distribution—
as an approximation to naturally occurring biological distributions. If a natural dis-
tribution is well approximated by a normal distribution, then the mean and standard
deviation provide a complete description of the distribution: The mean is the center
of the distribution: About 68% of the values are within 1 standard deviation of the
mean, about 95% are within 2 standard deviations of the mean, and so on.

As noted in Section 2.6, the 68% and 95% benchmarks can roughly be applica-
ble even to distributions that are rather skewed. (But if the distribution is skewed,
then the 68% is not symmetrically divided on both sides of the mean, and similarly
for the 95%.) However, the benchmarks do not apply to a distribution (even a sym-
metric one) for which one or both tails are long and thin (see Figures 2.2.13 and
2.2.16).

We will see in later chapters that many classical statistical methods are specifi-
cally designed for, and function best with, data that have been sampled from normal
populations.We will further see that in many practical situations these methods also
work very well for samples from nonnormal populations.

The normal distribution is of central importance in spite of the fact that many,
perhaps most, naturally occurring biological distributions could be described better
by a skewed curve than by a normal curve. A major use of the normal distribution is
not to describe natural distributions, but rather to describe certain theoretical distri-
butions, called sampling distributions, that are used in the statistical analysis of data.
We will see in Chapter 5 that many sampling distributions are approximately nor-
mal even when the underlying data are not; it is this property that makes the normal
distribution so important in the study of statistics.

Supplementary Exercises 4.S.1–4.S.21

(b) The P-value for the Shapiro–Wilk test of normality for
the data in Exercise 4.4.2(c) is 0.770. Using this value
to justify your answer, does it seem reasonable to be-
lieve that these data came from a normal population?

(c) Does the P-value in part (b) prove that the data
come from a normal population?

4.S.1 The activity of a certain enzyme is measured by
counting emissions from a radioactively labeled mole-
cule. For a given tissue specimen, the counts in consecu-
tive 10-second time periods may be regarded
(approximately) as repeated independent observations
from a normal distribution.15 Suppose the mean 10-
second count for a certain tissue specimen is 1,200 and

the standard deviation is 35. Let Y denote the count in a
randomly chosen 10-second time period. Find

(a)
(b)

(c)

(d) Pr51,150 … Y … 1,1756
Pr51,150 … Y … 1,2506
Pr5Y … 1.1756
Pr5Y Ú 1,2506
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4.S.2 The shell thicknesses of the eggs produced by a
large flock of hens follow approximately a normal distri-
bution with mean equal to 0.38 mm and standard devia-
tion equal to 0.03 mm (as in Example 4.1.2). Find the 95th
percentile of the thickness distribution.

4.S.3 Refer to the eggshell thickness distribution of Ex-
ercise 4.S.2. Suppose an egg is defined as thin shelled if its
shell is 0.32 mm thick or less.
(a) What percentage of the eggs are thin shelled?

(b) Suppose a large number of eggs from the flock are
randomly packed into boxes of 12 eggs each. What
percentage of the boxes will contain at least one
thin-shelled egg? (Hint: First find the percentage of
boxes that will contain no thin-shelled egg.)

4.S.4 The heights of a certain population of corn plants
follow a normal distribution with mean 145 cm and stan-
dard deviation 22 cm.16 What percentage of the plant
heights are
(a) 100 cm or more?

(b) 120 cm or less?

(c) between 120 and 150 cm?

(d) between 100 and 120 cm?

(e) between 150 and 180 cm?

(f) 180 cm or more?

(g) 150 cm or less?

4.S.5 Suppose four plants are to be chosen at random
from the corn plant population of Exercise 4.S.4. Find the
probability that none of the four plants will be more than
150 cm tall.

4.S.6 Refer to the corn plant population of Exercise
4.S.4. Find the 90th percentile of the height distribution.

4.S.7 For the corn plant population described in Exercise
4.S.4, find the quartiles and the interquartile range.

4.S.8 Suppose a certain population of observations is
normally distributed.
(a) Find the value of such that 95% of the observa-

tions in the population are between and on
the Z scale.

(b) Find the value of such that 99% of the observa-
tions in the population are between and on
the Z scale.

4.S.9 In the nerve-cell activity of a certain individual fly,
the time intervals between “spike” discharges follow ap-
proximately a normal distribution with mean 15.6 ms and
standard deviation 0.4 ms (as in Example 4.1.3). Let Y de-
note a randomly selected interspike interval. Find
(a) (b)

(c) (d) Pr515 6 Y 6 15.56Pr515 6 Y 6 16.56
Pr5Y 7 16.56Pr5Y 7 156

+z*-z*
z*

+z*-z*
z*

4.S.10 For the distribution of interspike-time intervals
described in Exercise 4.S.9, find the quartiles and the in-
terquartile range.

4.S.11 Among American women aged 20 to 29 years,
10% are less than 60.8 inches tall, 80% are between 60.8
and 67.6 inches tall, and 10% are more than 67.6 inches
tall.17 Assuming that the height distribution can ade-
quately be approximated by a normal curve, find the
mean and standard deviation of the distribution.

4.S.12 The intelligence quotient (IQ) score, as measured
by the Stanford-Binet IQ test, is normally distributed in a
certain population of children. The mean IQ score is 100
points, and the standard deviation is 16 points.18 What
percentage of children in the population have IQ scores
(a) 140 or more? (b) 80 or less?

(c) between 80 and 120? (d) between 80 and 140?

(e) between 120 and 140?

4.S.13 Refer to the IQ distribution of Exercise 4.S.12. Let
Y be the IQ score of a child chosen at random from the
population. Find .

4.S.14 Refer to the IQ distribution of Exercise 4.S.12.
Suppose five children are to be chosen at random from
the population. Find the probability that exactly one of
them will have an IQ score of 80 or less and four will have
scores higher than 80. (Hint: First find the probability
that a randomly chosen child will have an IQ score of 80
or less.)

4.S.15 A certain assay for serum alanine aminotrans-
ferase (ALT) is rather imprecise. The results of repeated
assays of a single specimen follow a normal distribution
with mean equal to the true ALT concentration for that
specimen and standard deviation equal to 4 U/l (see
Example 2.2.12). Suppose that a certain hospital lab
measures many specimens every day, performing one
assay for each specimen, and that specimens with ALT
readings of 40 U/l or more are flagged as “unusually
high.” If a patient’s true ALT concentration is 35 U/l,
what is the probability that his specimen will be flagged
as “unusually high”?

4.S.16 Resting heart rate was measured for a group of
subjects; the subjects then drank 6 ounces of coffee. Ten
minutes later their heart rates were measured again. The
change in heart rate followed a normal distribution, with
a mean increase of 7.3 beats per minute and a standard
deviation of 11.1.19 Let Y denote the change in heart rate
for a randomly selected person. Find

(a) (b)

(c)

4.S.17 Refer to the heart rate distribution of Exercise
4.S.16.The fact that the standard deviation is greater than
the average and that the distribution is normal tells us

Pr55 6 Y 6 156
Pr5Y 7 206Pr5Y 7 106

Pr580 … Y … 1406
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that some of the data values are negative, meaning that
the person’s heart rate went down, rather than up.
Find the probability that a randomly chosen person’s
heart rate will go down. That is, find .

4.S.18 Refer to the heart rate distribution of Exercise
4.S.16. Suppose we take a random sample of size 400
from this distribution. How many observations do we ex-
pect to obtain that fall between 0 and 15?

4.S.19 Refer to the heart rate distribution of Exercise
4.S.16. If we use the 1.5 � IQR rule, from Chapter 2, to
identify outliers, how large would an observation need to
be in order to be labeled an outlier on the upper end?

Pr5Y 6 06

4.S.20 It is claimed that the heart rates of Exercise 4.S.16
follow a normal distribution. If this is true, which of the
following Shapiro–Wilk’s test P-values for a random
sample of 15 subjects are consistent with this claim?

(a) P-value (b) P-value

(c) P-value (d) P-value

4.S.21 The following four normal probability plots, (a),
(b), (c), and (d), were generated from the distributions
shown by histograms I, II, and III and another histogram
that is not shown. Which normal probability plot goes
with which histogram? How do you know? (There will be
one normal probability plot that is not used.)

= 0.0042= 0.0498

= 0.1345= 0.0149

Y

Normal scores

(a)

Y

Normal scores

(d)

Y

Normal scores

(c)

Y

Normal scores

(b)

Y

I

Y Y

II III


